python - how to use GridSearchCV with custom estimator in sklearn? -
i have estimator should compatible sklearn api. trying fit 1 parameter of estimator gridsearchcv
not understand how it.
this code:
import numpy np import sklearn sk sklearn.linear_model import linearregression, lassolarscv, ridgecv sklearn.linear_model.base import linearclassifiermixin, sparsecoefmixin, baseestimator class elm(baseestimator): def __init__(self, n_nodes, link='rbf', output_function='lasso', n_jobs=1, c=1): self.n_jobs = n_jobs self.n_nodes = n_nodes self.c = c if link == 'rbf': self.link = lambda z: np.exp(-z*z) elif link == 'sig': self.link = lambda z: 1./(1 + np.exp(-z)) elif link == 'id': self.link = lambda z: z else: self.link = link if output_function == 'lasso': self.output_function = lassolarscv(cv=10, n_jobs=self.n_jobs) elif output_function == 'lr': self.output_function = linearregression(n_jobs=self.n_jobs) elif output_function == 'ridge': self.output_function = ridgecv(cv=10) else: self.output_function = output_function return def h(self, x): n, p = x.shape xw = np.dot(x, self.w.t) xw = xw + np.ones((n, 1)).dot(self.b.t) return self.link(xw) def fit(self, x, y, w=none): n, p = x.shape self.mean_y = y.mean() if w == none: self.w = np.random.uniform(-self.c, self.c, (self.n_nodes, p)) else: self.w = w self.b = np.random.uniform(-self.c, self.c, (self.n_nodes, 1)) self.h_train = self.h(x) self.output_function.fit(self.h_train, y) return self def predict(self, x): self.h_predict = self.h(x) return self.output_function.predict(self.h_predict) def get_params(self, deep=true): return {"n_nodes": self.n_nodes, "link": self.link, "output_function": self.output_function, "n_jobs": self.n_jobs, "c": self.c} def set_params(self, **parameters): parameter, value in parameters.items(): setattr(self, parameter, value) ### fit c parameter ### x = np.random.normal(0, 1, (100,5)) y = x[:,1] * x[:,2] + np.random.normal(0, .1, 100) gs = sk.grid_search.gridsearchcv(elm(n_nodes=20, output_function='lr'), cv=5, param_grid={"c":np.linspace(0.0001,1,10)}, fit_params={}) #gs.fit(x, y) # error
there 2 problems within code:
you didn't specify
scoring
argumentgridsearchcv
. seems doing regression,mean_squared_error
option.your
set_params
doesn't return reference object itself. should addreturn self
afterfor
loop.as andreas mentioned, need redefine
set_params
,get_params
in scikit-learn. having inheritedbaseestimator
should enough.
Comments
Post a Comment